Skip to main content
SHARE
Publication

Molecular Self-Assembly Driven by London Dispersion Forces...

Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Volume
84
Issue
24

The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, can the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.