Skip to main content
SHARE
Publication

Monitoring the Folding Kinetics of a β-Hairpin by Time-Resolved IR Spectroscopy in Silico...

by Isabella Daidone, Lipi Thukral, Jeremy C Smith, Andrea Amadei
Publication Type
Journal
Journal Name
Journal of Physical Chemistry B
Publication Date
Page Numbers
4849 to 4856
Volume
119
Issue
14

Protein folding is one of the most fundamental problems in modern biochemistry. Time-resolved infrared (IR) spectroscopy in the amide I region is commonly used to monitor folding kinetics. However, associated atomic detail information on the folding mechanism requires simulations. In atomistic simulations structural order parameters are typically used to follow the folding process along the simulated trajectories. However, a rigorous test of the reliability of the mechanisms found in the simulations requires calculation of the time-dependent experimental observable, i.e., in the present case the IR signal in the amide I region. Here, we combine molecular dynamics simulation with a mixed quantum mechanics/molecular mechanics theoretical methodology, the Perturbed Matrix Method, in order to characterize the folding of a β-hairpin peptide, through modeling the time-dependence of the amide I IR signal. The kinetic and thermodynamic data (folding and unfolding rate constants, and equilibrium folded- and unfolded-state probabilities) obtained from the fit of the calculated signal are in good agreement with the available experimental data [Xu et al. J. Am. Chem. Soc. 2003, 125, 15388–15394]. To the best of our knowledge, this is the first report of the simulation of the time-resolved IR signal of a complex process occurring on a long (microsecond) time scale.