Skip to main content
SHARE
Publication

Naphthalimidedioxime ligand-containing Fiber Adsorbent for uranium recovery from seawater...

Publication Type
Journal
Journal Name
Industrial & Engineering Chemistry Research
Publication Date
Page Numbers
4161 to 4169
Volume
55
Issue
15

Uranium exists as uranyl carbonates (primarily as [UO2(CO3)3]4-) at a low concentration of ∼3.3 ppb, in seawater. Due to the ocean's vast volume, the total amount of uranium in seawater has been estimated at 4.5 billion tons or nearly 1000 times more than land-based resources. This large surplus provides attractive solution to supply nuclear fuel feeds in future. However, the presence of a variety of competing metal ions and the low concentration of uranium in seawater make the extraction of uranium from seawater challenging. The goal of this work is to develop adsorbent fibers that can recover uranium from the slightly alkaline (pH 8.0 - 8.3) seawater. In this process, radiation-induced graft polymerization (RIGP) is used where fibers are prepared by irradiating and treating polyethylene (PE) with different bulk ratios of vinyl benzyl chloride (VBC) and methacrylic acid (MAA) or itaconic acid. Furthermore, chemical modifications of these fibers were performed via two step processes, where novel bisimidoxime ligands are incorporated into fibers. These ligands contain imidedioxime, which is known to be a uranium-philic functionality. Also, the core structures of these ligands containing three donor atoms facilitate the formation of chelates with uranyl ion in seawater. Density functional theory (DFT) calculations were performed to quantify the binding strength with the uranyl ion. The adsorbent showed moderate to high uranium (~35-50 g-U/kg adsorbent) adsorption capacity in a model seawater with a uranium concentration of 6 ppm at pH 8.0 – 8.3.