Skip to main content
SHARE
Publication

New Pt(II)(dithiolate) Compounds Possessing an Energetically Accessible Diphosphine-Based LUMO: Syntheses, Redox Properties, ...

by Sean Hunt, Li Yang, Xiaoping Wang, Vladimir Nesterov, Michael Richmond
Publication Type
Journal
Journal Name
Journal of Inorganic and Organometallic Polymers and Materials
Publication Date
Page Numbers
457 to 467
Volume
20
Issue
3

The new ligand 2-(pyren-1-ylidene)-4,5-bis- (diphenylphosphino)-4-cyclopenten-1,3-dione (pbpcd) has been synthesized from the Knoevenagel condensation using 1-pyrenecarboxaldehyde with 4,5-bis(diphenylphosphino)- 4-cyclopenten-1,3-dione (bpcd). Displacement of the cod ligand in PtCl2(cod) by pbpcd furnishes PtCl2 (pbpcd) (2) in near quantitative yield. Treatment of 2 with the dipotassium salt of toluene-3,4-dithiol (K2tdt) affords the dithiolate compound Pt(tdt)(pbpcd) (3) as a 1:1 mixture of diastereomers. An alternative synthesis of 3 from Pt(tdt)(bpcd) (5) and 1-pyrenecarboxaldehyde also affords 3 in 23% yield. The pbpcd ligand and all new diphosphinesubstituted compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies, and the solid-state structures of 2_CH2Cl2, 3_toluene, and 5_CH2Cl2 established by X-ray diffraction analyses. The solid-state structure of each product exhibits a square-planar architecture at the metal center. The redox properties of the pbpcd ligand and the tdt-substituted compound 3 have been explored by cyclic and differential-pulse voltammetry, and these data are discussed with respect to extended Huckel MO calculations and the nature of the HOMO and LUMO levels in each compound.