Skip to main content
SHARE
Publication

Pair distribution function analysis of neutron-irradiated silicon carbide...

Publication Type
Journal
Journal Name
Journal of Nuclear Materials
Publication Date
Page Number
151798
Volume
527

We have employed x-ray total scattering to investigate the structure of polycrystalline 3C-silicon carbide following neutron irradiation. The structure as a function of irradiation temperature and dose was quantified by analyzing pair distribution functions. Although the SiC matrix retains its crystal structure after irradiation, a significant increase in the diffuse scattering component is observable indicating that neutron irradiation leads to changes in both the short- and medium-range order. These changes include both an irradiation dose- and temperature-dependent increase in the vacancy concentration leading to an increase in the Si and C atomic displacement parameters. A dose-dependent decrease in the size of defect free material is also quantified from the structural refinements due to an increase in the number of defects and defect clusters. Evidence of additional correlations in the short-range order (up to ∼4 Å) from differential pair distribution function analysis indicate that combinations of atomistic defects including anti-site defects, vacancies and defect clusters are present after these irradiation conditions. Such structural information will be valuable for direct comparison of experimental and simulated atomic structures of irradiated silicon carbide.