Skip to main content
SHARE
Publication

Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durabil...

by Xuefeng Wang, Yu Wang, Medaline Vera, Miaofang Chi, Younan Xia
Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
15036 to 15042
Volume
137
Issue
47

We report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm(pt)(2)) and mass (1.60 A/mg/0 ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm(pt)(2) and 0.32 A/mgpt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgpt, more than twice that of the pristine Pt/C catalyst.