Skip to main content
SHARE
Publication

Performance analysis of absorption thermal energy storage for distributed energy systems...

by Lingshi Wang, Fu Xiao, Borui Cui, Maomao Hu, Tao Lu
Publication Type
Conference Paper
Journal Name
Energy Procedia
Publication Date
Page Numbers
3152 to 3157
Volume
158
Issue
0
Conference Name
10th International Conference on Applied Energy (ICAE2018)
Conference Location
Hong Kong, Hong Kong
Conference Sponsor
Elsevier
Conference Date
-

In recent years, distributed energy systems (DES) have attracted worldwide attention. Distributed generation unit (DG) in DES usually works under part load during night, which results in low efficiency and the waste heat of DG cannot be fully utilized. This study proposes a novel absorption thermal energy storage system together with electric energy storage for distributed energy systems. The proposed absorption thermal energy storage system which is a combination of absorption chiller and liquid storage tanks, has a higher energy storage density. During off-peak hours, the extra electricity of DG can be used by electric chillers (EC) and the extra waste heat of DG is stored by the proposed absorption thermal energy storage system. The stored thermal energy is released in peak hours to meet the cooling loads of buildings. A case study of DES in a campus under cooling-dominated climate is conducted to evaluate the performance of the proposed system. The results in a typical summer day indicate that the DG utilization rate increases from 80% to 92.9%, meanwhile the required capacities of electric chillers can be obviously reduced. The operating cost of DES also reduces by 12.9% compared with the DES without energy storage. Through appropriate operation strategy, off-the-grid operation for DES can be achieved without energy waste by applying the proposed energy storage method.