Skip to main content
SHARE
Publication

Performance Efficient Multiresilience Using Checkpoint Recovery In Iterative Algorithms

by Rizwan A Ashraf, Rizwan A Ashraf, Christian Engelmann, Christian Engelmann
Publication Type
Conference Paper
Journal Name
European Conference on Parallel Processing
Publication Date
Page Numbers
813 to 825
Volume
11339
Conference Name
11th Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids
Conference Location
Turin, Italy
Conference Sponsor
Euro-Par 2018 International Workshops

In this paper, we address the design challenge of building multiresilient iterative high-performance computing (HPC) applications. Multiresilience in HPC applications is the ability to tolerate and maintain forward progress in the presence of both soft errors and process failures. We address the challenge by proposing performance models which are useful to design performance efficient and resilient iterative applications. The models consider the interaction between soft error and process failure resilience solutions. We experimented with a linear solver application with two distinct kinds of soft error detectors: one detector has high overhead and high accuracy, whereas the second has low overhead and low accuracy. We show how both can be leveraged for verifying the integrity of checkpointed state used to recover from both soft errors and process failures. Our results show the performance efficiency and resiliency benefit of employing the low overhead detector with high frequency within the checkpoint interval, so that timely soft error recovery can take place, resulting in less re-computed work.