Skip to main content
SHARE
Publication

Performance of Nitrile-Containing Anions in Task-Specific Ionic Liquids for Improved CO2/N2 Separation...

by Shannon M Mahurin, Jeseung Lee, Gary A Baker, Huimin Luo, Sheng Dai
Publication Type
Journal
Journal Name
Journal of Membrane Science
Publication Date
Page Numbers
177 to 183
Volume
353
Issue
1-2

This work explores the performance of a series of ionic liquids that incorporate a nitrile-containing anion paired to 1-alkyl-3-methylimidazolium cations in tailoring the selectivity and permeance of supported ionic liquid membranes for CO2/N2 separations. The permeance and selectivity of three ionic liquids, each with an increasing number of nitrile groups in the anion (i.e., two, three, and four), were measured using a non-steady-state permeation method. By predictably varying the molar volume and viscosity of the ionic liquids, we show that the solubility, selectivity, and permeance can be optimized for CO2/N2 separation through controlled introduction of the nitrile functionality into the anion. Of the three nitrile-based ionic liquids studied, 1-ethyl-3-methylimidazolium tetracyanoborate, [emim][B(CN)4], showed the highest permeance with a value of 2.55 × 10–9 mol/(m2•Pa•s), a magnitude 30% higher than that of the popular ionic liquid [emim][Tf2N]. This same nitrile-bearing ionic liquid also exhibited a high CO2/N2 selectivity of approximately 53. Additionally, the carbon dioxide solubility for each ionic liquid was measured at room temperature with [emim][B(CN)4] again exhibiting the highest CO2 solubility. Results from our study of the nitrile-based ionic liquids can be rationalized in terms of regular solution theory wherein the selectivity and permeance of a given SILM system are largely determined by the molar volume and viscosity of the corresponding ionic liquid phase.