Skip to main content
SHARE
Publication

Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers...

by Robin Petruzielo, Frederick A Heberle, Paul Drazba, John Katsaras, Gerald Feigenson
Publication Type
Journal
Journal Name
Biochimica et Biophysica Acta (BBA) - Biomembranes
Publication Date
Page Numbers
1302 to 1313
Volume
1828
Issue
4

Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using Förster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25 °C. By combining two techniqueswith different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS),we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25 °C for bothmixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nmin radius at 25 °C: that is, domains must be on the order of the 2–6 nmFörster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SMcomponent (which consists of amixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo.