Skip to main content
SHARE
Publication

Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor...

Publication Type
Conference Paper
Journal Name
Fusion Engineering and Design
Publication Date
Page Numbers
1125 to 1129
Volume
84
Issue
7-11
Conference Name
25th Symposium on Fusion Technology
Conference Location
Rostock, Germany
Conference Date
-

Recent National Spherical Tokamak Experiment (NSTX) high-power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components (PFCs) to the performance of divertor plasmas in both L- and H-mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15–25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW 1), to enable ne scan capability (×2) in the H-mode, to test the ability to operate at significantly lower density (e.g., ne/nGW = 0.25), for future reactor designs based on the Spherical Tokamak, and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5 s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.