Skip to main content
SHARE
Publication

Piezoresponse amplitude and phase quantified for electromechanical characterization...

Publication Type
Journal
Journal Name
Journal of Applied Physics
Publication Date
Page Number
171105
Volume
128
Issue
17

Piezoresponse force microscopy (PFM) is a powerful characterization technique to readily image and manipulate the ferroelectric domains. PFM gives an insight into the strength of local piezoelectric coupling and polarization direction through PFM amplitude and phase, respectively. Converting measured arbitrary units into units of effective piezoelectric constant remains a challenge, and insufficient methods are often used. While most quantification efforts have been spent on quantifying the PFM amplitude signal, little attention has been given to the PFM phase, which is often arbitrarily adjusted to fit expectations. This is problematic when investigating materials with unknown or negative sign of the probed effective electrostrictive coefficient or strong frequency dispersion of electromechanical responses, because assumptions about the PFM phase cannot be reliably made. The PFM phase can, however, provide important information on the polarization orientation and the sign of the effective electrostrictive coefficient probed by PFM. Most notably, the orientation of the PFM hysteresis loop is determined by the PFM phase. Moreover, when presenting PFM data as a combined signal, the resulting response can be artificially lowered or asymmetric if the phase data have not been correctly processed. Here, we explain the PFM amplitude quantification process and demonstrate a path to identify the phase offset required to extract correct meaning from the PFM phase data. We explore different sources of phase offsets including the experimental setup, instrumental contributions, and data analysis. We discuss the physical working principles of PFM and develop a strategy to extract physical meaning from the PFM amplitude and phase.