Skip to main content
SHARE
Publication

Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd–Pt Bimetallic Nanocrystals with...

Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
12263 to 12270
Volume
138
Issue
37

We report a quantitative understanding of the reduction kinetics responsible for the formation of Pd–Pt bimetallic nanocrystals with two distinctive structures. The syntheses involve the use of KBr to manipulate the reaction kinetics by influencing the redox potentials of metal precursor ions via ligand exchange. In the absence of KBr, the ratio between the initial reduction rates of PdCl42– and PtCl42– was about 10.0, leading to the formation of Pd@Pt octahedra with a core–shell structure. In the presence of 63 mM KBr, the products became Pd–Pt alloy nanocrystals. In this case, the ratio between the initial reduction rates of the two precursors dropped to 2.4 because of ligand exchange and, thus, the formation of PdBr42– and PtBr42–. The alloy nanocrystals took a cubic shape owing to the selective capping effect of Br– ions toward the {100} facets. Relative to the alloy nanocubes, the Pd@Pt core–shell octahedra showed substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). Specifically, the specific (1.51 mA cm–2) and mass (1.05 A mg–1Pt) activities of the core–shell octahedra were enhanced by about four- and three-fold relative to the alloy nanocubes (0.39 mA cm–2 and 0.34 A mg–1Pt, respectively). Even after 20000 cycles of accelerated durability test, the core–shell octahedra still exhibited a mass activity of 0.68 A mg–1Pt, twice that of a pristine commercial Pt/C catalyst.