Skip to main content
SHARE
Publication

Quantum Annealing for Prime Factorization...

by Shuxian Jiang, Keith A Britt, Alexander J Mccaskey, Travis S Humble, Sabre Kais
Publication Type
Journal
Journal Name
Scientific Reports
Publication Date
Page Numbers
17667 to 17667
Volume
8
Issue
1

We have developed a framework to convert an arbitrary integer factorization problem to an executable Ising model by first writing it as an optimization function then transforming the k-bit coupling (k ≥ 3) terms to quadratic terms using ancillary variables. Our resource-efficient method uses O(log2(N)) binary variables (qubits) for finding the factors of an integer N. We present how to factorize 15, 143, 59989, and 376289 using 4, 12, 59, and 94 logical qubits, respectively. This method was tested using the D-Wave 2000Q for finding an embedding and determining the prime factors for a given composite number. The method is general and could be used to factor larger integers as the number of available qubits increases, or combined with other ad hoc methods to achieve better performances for specific numbers.