Skip to main content
SHARE
Publication

Radiation Resistance of XLPE Nano-dielectrics for Advanced Reactor Applications...

Publication Type
Conference Paper
Publication Date
Page Numbers
937 to 941
Volume
110
Publisher Location
La Grange Park, Illinois, United States of America
Conference Name
2014 ANS Annual Meeting
Conference Location
Reno, Nevada, United States of America
Conference Date
-

Recently there has been renewed interest in nuclear reactor safety, particularly as commercial reactors are approaching 40 years’ service and lifetime extensions are considered, as well as for new reactor building projects around the world. The materials that are currently used in cabling for instrumentation, reactor control, and communications include cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR), polyvinyl chloride (PVC), neoprene, and chlorosulfonated polyethylene. While these materials show suitable radiation tolerance in laboratory tests, failures before their useful lifetime occur due to the combined environmental effects of radiation, temperature and moisture, or operation under abnormal conditions. In addition, the extended use of commercial reactors beyond their original service life places a greater demand on insulating materials to perform beyond their current ratings in these nuclear environments.
Nanocomposite materials that are based on XLPE and other epoxy resins incorporating TiO2, MgO, SiO2, and Al2O3 nanoparticles are being fabricated using a novel in-situ method established at ORNL to demonstrate materials with increased resistance to radiation. As novel nanocomposite dielectric materials are developed, characterization of the non-irradiated and irradiated nanodielectrics will lead to a knowledge base that allow for dielectric materials to be engineered with specific nanoparticle additions for maximum benefit to wide-variety of radiation environments found in nuclear reactors. This paper presents the initial findings on the development of XLPE-based SiO2 nano-composite dielectrics in the context of electrical performance and radiation degradation.