Skip to main content
SHARE
Publication

Raman Spectroscopy as an ortho-para diagnostic of liquid hydrogen moderators...

by Robert C Gillis, T. Bailey, Franz X Gallmeier, M. Hartl, Erik B Iverson
Publication Type
Conference Paper
Journal Name
Journal of Physics: Conference Series
Publication Date
Page Number
012062
Volume
1021
Conference Name
Internanational Collaboration on Advanced Neutron Sources (ICANS) XXII
Conference Location
Oxford, United Kingdom
Conference Date
-

The intense radiation environment of a neutron moderator provides a mechanism for significant up-conversion of parahydrogen to orthohydrogen inside the moderator, as well as intrinsically catalyzing relaxation of orthohydrogen to parahydrogen. It is plausible that the steady-state orthohydrogen fraction of a moderator in a radiation environment such as at the Spallation Neutron Source (SNS) or the European Spallation Source (ESS) is as high as 30 % without supplemental catalysis. Direct measurement of the orthohydrogen fraction in the liquid hydrogen flow itself is essential to predict and monitor moderator performance, especially for thick or flat moderator concepts such as the ones that have been proposed for the ESS and for upgrades to the SNS. Raman spectroscopy provides a well-known method for directly measuring the hydrogen make-up in an unambiguous way. We describe our tests of Raman spectroscopy for application to the measurement of the orthohydrogen fraction of the hydrogen moderators at SNS and at the ESS. As part of this work, we have additionally developed a sample holder that has been used to perform simultaneous Raman and neutron vibrational spectroscopy on the VISION spectrometer at SNS. We discuss our plans to incorporate such a system as a diagnostic for liquid hydrogen moderators at SNS and at the ESS.