Skip to main content
SHARE
Publication

Relating fish health and Reproductive Metrics to Contaminant Bioaccumulation at the Tennessee Valley Authority Kingston Coal ...

Publication Type
Journal
Journal Name
Ecotoxicology
Publication Date
Page Numbers
1 to 14
Volume
N/
Issue
6

A 4.1 million m3 release of coal ash into the Emory and Clinch rivers in December 2008 at Tennessee Valley Authority’s Kingston Fossil Plant has prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on biota. Of concern in this spill were arsenic (As) and selenium (Se), heavy metal constituents of coal ash that can be toxic to fish and wildlife and also mercury (Hg): a legacy contaminant that can interact with Se in organisms. We used fish filet bioaccumulation data from Bluegill Lepomis macrochirus, Redear Lepomis microlophus, Largemouth Bass Micropterus salmoides and Channel Catfish Ictalurus punctatus and metrics of fish health including fish condition indices, blood chemistry parameters and liver histopathology data collected from 2009-2013 to determine whether tissue heavy metal burdens relate 1) to each other 2) to metrics of fish health (e.g., blood chemistry characteristics and liver histopathology) and condition, and 3) whether relationships between fish health characteristics and heavy metals are related to site and ash-exposure. We found that burdens of Se and As are generally related to each other between tissues, but burdens of Hg between tissues are not generally positively associated. Taking analyses together, there appears to be reductions in growth and sublethal liver and kidney dysfunction in Bluegill and Largemouth Bass as indicated by blood chemistry parameters (elevated blood protein, glucose, phosphorous, blood urea nitrogen and creatinine in ash-affected sites) and related to concentrations of As and Se. Seeing sub-lethal effects in these species of fish is interesting because Redear had the highest filet burdens of Se, but did not have biomarkers indicating disease or dysfunction. We conclude our study by highlighting the complexities inherent in multimetric fish health data and the need for continued monitoring to further untangle contaminant and fish health associations.