Skip to main content
SHARE
Publication

Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation...

by Keith F Eckerman, W Bolch, M Zankl, N Petoussi-henss
Publication Type
Journal
Journal Name
Radiation Protection Dosimetry
Publication Date
Page Numbers
187 to 191
Volume
127
Issue
1-4

The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological
Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces.
To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose�response functions. This paper outlines the development of such response functions for photons.