Skip to main content
SHARE
Publication

Review and Ranking of NDA Techniques to Determine Plutonium Content in Spent Fuel...

by Jesse R Cheatham, John C Wagner
Publication Type
Conference Paper
Publication Date
Conference Name
INMM 51st Annual Meeting
Conference Location
Baltimore, Maryland, United States of America
Conference Date
-

A number of efforts are under way to improve nondestructive assay (NDA) techniques for spent nuclear fuel (SNF) safeguard applications. These efforts have largely focused on advancing individual NDA approaches to assay plutonium content. Although significant improvements have been made in NDA techniques, relatively little work has been done to thoroughly and systematically compare the methods. A comparative review of the relative strengths and weaknesses of current NDA techniques brings a new perspective to guide future research. To gauge the practicality and effectiveness of the various relevant NDA approaches, criteria have been developed from two broad categories: functionality and operability. The functionality category includes accuracy estimates, measurement time, plutonium verification capabilities, and assembly or fuel rod assay. Since SNF composition changes with operational history and cooling times, the viability of certain NDA approaches will also change over time. While active interrogation approaches will benefit from reduced background radiation, passive assays will lose the information contained in short-lived isotopes. Therefore, the expected assay accuracy as a function of time is considered. The operability category attempts to gauge the challenges associated with the application of different NDA techniques. This category examines the NDA “deploy-ability,” measurement capabilities and constraints in spent fuel pools, required on-site facilities, NDA technique synergies, and the extent to which the measurements are obtrusive to the facility. Each topic listed in the categories will be given a numerical score used to rank the different NDA approaches. While the combined numerical score of each technique is informative, the individual-topic scoring will allow for a more-tailored ranking approach. Since the needs and tools of the International Atomic Energy Agency differ from those of a recycling facility, the “best” assay technique may change with users and SNF characteristics. This ranking system will also examine the merits of a staged inspection with quick measurements followed by more-accurate assays of suspicious SNF. The final results of this ranking process will be used to guide the NDA safeguards research at Oak Ridge National Laboratory.