Skip to main content
SHARE
Publication

Role of atomic-level defects and electronic energy loss on amorphization in LiNbO3 single crystals...

by Neila Sellami Bouachir, Miguel Crespillo, H Xue, Yanwen Zhang, William J Weber
Publication Type
Journal
Journal Name
Journal of Physics D: Applied Physics
Publication Date
Page Number
325103
Volume
50
Issue
32

Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO3 has been irradiated with 0.9 MeV Si+ and 8 MeV O3+, which are representative of regimes where nuclear (Sn) and electronic (Se) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si+ ions to create different pre-existing damage states. Below the threshold (Se,th = 5-6 keV nm-1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O3+ ions, with nearly constant Se of about 3 keV nm-1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with increasing amount of pre-existing damage. These results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic devices applications.