Skip to main content
SHARE
Publication

Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method...

Publication Type
Journal
Journal Name
ChemSusChem
Publication Date
Page Numbers
111 to 115
Volume
13
Issue
1

In the present study, a sonochemical-based method for one-pot synthesis of entropy-stabilized perovskite oxide nanoparticle catalysts with high surface area was developed. The high-entropy perovskite oxides were synthesized as monodispersed, spherical nanoparticles with an average crystallite size of approximately 5.9 nm. Taking advantage of the acoustic cavitation phenomenon in the ultrasonication process, BaSr(ZrHfTi)O3, BaSrBi(ZrHfTiFe)O3 and Ru/BaSrBi(ZrHfTiFe)O3 nanoparticles were crystallized as single-phase perovskite structures through ultrasonication exposure without calcination. Notably, the entropically-driven stability of Ru/BaSrBi(ZrHfTiFe)O3 with excellent dispersion of Ru in the perovskite phase bestowed the nanoparticles of Ru/BaSrBi(ZrHfTiFe)O3 with good catalytic activity for CO oxidation.