Skip to main content
SHARE
Publication

In situ determination of lithium ion cathode/electrolyte thickness and composition as a function of charge...

Publication Type
Journal
Journal Name
ACS Applied Materials & Interfaces
Publication Date
Page Numbers
18569 to 18576
Volume
6
Issue
21

In this work we report the first experimental in situ determination of the thickness and estimated composition of a condensed electrode/electrolyte interface at various states of charge for the high voltage Li-ion cathode LiMn1.5Ni0.5O4 by exploiting the power of neutron reflectometry.1 Understanding the electrode/electrolyte interface is critical to developing an understanding of interfacial reactions needed to model transport phenomena and predict more stable electrolytes for electrochemical cells.2,3 However, developing the ability to control interfacial reactions in electrochemical cells is arguably one of the most critical challenges confronting researchers focused on energy storage and conversion reactions as well as liquid phase reactions such as photocatalysts and biomass conversion.2 For example, in electrochemical energy storage systems, such as batteries, the reactions between a solid electrode and a liquid electrolyte can lead to the formation of the solid electrolyte interphase (SEI), which directly mediates the stability, durability and safety of the cell. Controlling these interfacial reactions is essential to developing new, durable, and higher energy storage systems needed in the future.