Skip to main content
SHARE
Publication

In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance...

Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
11497 to 11500
Volume
138
Issue
36

An in situ doping strategy has been developed for the generation of a novel family of hexaazatriphenylene-based conjugated triazine frameworks (CTFs) for efficient CO2 capture. The resulting task-specific materials exhibit an exceptionally high CO2 uptake capacity (up to 4.8 mmol g–1 at 297 K and 1 bar). The synergistic effects of ultrananoporosity and rich N/O codoped CO2-philic sites bestow the framework with the highest CO2 adsorption capacity among known porous organic polymers (POPs). This innovative approach not only enables superior CO2 separation performance but also provides tunable control of surface features on POPs, thereby affording control over bulk material properties. We anticipate this novel strategy will facilitate new possibilities for the rational design and synthesis of nanoporous materials for carbon capture.