Skip to main content
SHARE
Publication

In-situ Time-Resolved Neutron Diffraction Measurements of Microstructure Variations during Friction Stir Welding in a 6061-T6...

Publication Type
Conference Paper
Publication Date
Page Numbers
407 to 412
Conference Name
2008 Trends in Welding Research
Conference Location
Pine Mountain, Georgia, United States of America
Conference Sponsor
ASM
Conference Date
-

The microstructure change is one of the most important research areas in the friction stir welding (FSW). However, direct observation of microstructure changes during FSW has been extremely challenging because many measurement techniques are inapplicable. Recently developed in-situ time-resolved neutron diffraction methodology, which drastically improves the temporal resolution of neutron diffraction, enables to observe the transient microstructure changes during FSW. We installed a portable FSW system in the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos Neutron Science Center and the FSW was made on 6.35mm-thickness 6061-T6 Al alloy plate. At the same time, the neutron beam was centered on the mid-plane of the Al plate at 8 mm from the tool center (underneath the tool shoulder) and the diffraction peak was continuously measured during welding. The peak broadening analysis has been performed using the Williamson-Hall Method. The result shows that the dislocation density of about 3.2 x 10^15 m-2 duing FSW, which is the significant increse compared to the before (4.5 x 10^14 m-2) and after (4.0 x 10^14 m-2) the FSW. The quantitatively analysis of the grain structure can provide an insight to understand the transient variation of the microstructure during FSW.