Skip to main content
SHARE
Publication

Solute-vacancy clustering in aluminum...

by Jian Peng, Sumit Bahl, Amit Shyam, James A Haynes, Dongwon Shin
Publication Type
Journal
Journal Name
Acta Materialia
Publication Date
Page Numbers
747 to 758
Volume
196
Issue
1

We present an extensive first-principles database of solute-vacancy, homoatomic, heteroatomic solute-solute, and solute-solute-vacancy binding energies of relevant alloying elements in aluminum. We particularly focus on the systems with major alloying elements in aluminum, i.e., Cu, Mg, and Si. The computed binding energies of solute-vacancy, solute-solute pairs, and solute-solute-vacancy triplets agree with available experiments and theoretical results in literature. We consider physical factors such as solute size and formation energies of intermetallic compounds to correlate with binding energies. Systematic studies of the homoatomic solute-solute-vacancy and heteroatomic (Cu, Mg, or Si)-solute-vacancy complexes reveal the overarching effect of the vacancy in stabilizing solute-solute pairs. The binding energy database presented here elucidates the interaction between solute cluster and vacancy in aluminum, and it is expected to provide insight into the design of advanced Al alloys with tailored properties.