Skip to main content
SHARE
Publication

Strain dependence of antiferromagnetic interface coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices...

Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Volume
91
Issue
13

We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg(1/3)Nb(2/3)O(3)-0.28PbTiO(3)(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La0.7Sr0.3MnO3(22 angstrom)/SrRuO3(55 angstrom)](15) superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.