Skip to main content
SHARE
Publication

A Study of Complex Deep Learning Networks on High-Performance, Neuromorphic, and Quantum Computers...

Publication Type
Journal
Journal Name
ACM Journal on Emerging Technologies in Computing Systems
Publication Date
Page Number
19
Volume
14
Issue
2

Current deep learning approaches have been very successful using convolutional neural networks trained on large graphical-processing-unit-based computers. Three limitations of this approach are that (1) they are based on a simple layered network topology, i.e., highly connected layers, without intra-layer connections; (2) the networks are manually configured to achieve optimal results, and (3) the implementation of the network model is expensive in both cost and power. In this article, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. We use the MNIST dataset for our experiment, due to input size limitations of current quantum computers. Our results show the feasibility of using the three architectures in tandem to address the above deep learning limitations. We show that a quantum computer can find high quality values of intra-layer connection weights in a tractable time as the complexity of the network increases, a high performance computer can find optimal layer-based topologies, and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware.