Skip to main content
SHARE
Publication

Switchable Induced Polarization in LaAlO3/SrTiO3 Heterostructures...

Publication Type
Journal
Journal Name
Nano Letters
Publication Date
Page Numbers
1765 to 1771
Volume
12
Issue
4

Demonstration of a tunable conductivity of the LaAlO3/SrTiO3 interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal−insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO3 surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the twodimensional electron gas (2DEG) density at the LaAlO3/SrTiO3 (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the
LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.