Skip to main content
SHARE
Publication

Synergistic enhancement of nanocellulose foam with dual in situ mineralization and crosslinking reaction...

by Chen Huang, Mi Li, Xianzhi Meng, Arthur J Ragauskas
Publication Type
Journal
Journal Name
International Journal of Biological Macromolecules
Publication Date
Page Numbers
3198 to 3205
Volume
165
Issue
B

Cellulose nanocrystals (CNCs) foams have recently gained research interests because they are renewable, abundant, biodegradable and exhibit high surface area. However, the application of CNCs-based foams is still challenging, which is attributed to its lack of effective entanglements between the CNCs particles, thus lowering foam properties. In this study, a synergistic enhancement strategy was proposed, based on the in situ mineralization with hydroxyapatite (HAP) layer onto the CNCs surface, followed by a chemical crosslinking reaction. The physical and chemical structures of the composites were analyzed with SEM, STEM, XRD, FTIR, and TGA. By controlling the amount of coated HAP and the crosslinker, it is possible to manufacture a series of CNCs-based foams that are lightweight (50–75 mg/cm3), highly porous (~90%) with high water absorption (>1300%) and outstanding mechanical strength properties (as high as 1.37 MPa). Moreover, our study further indicated that these CNCs/HAP materials could increase the proliferation of rat osteoblast cells. The method developed in this study presents a novel approach to design improved networked CNCs foam, which has the potential to be used in thermal-retardant material, wastewater treatment, tissue engineering, and personal care applications.