Skip to main content
SHARE
Publication

Tb3+ in TbCo3B2, a Singlet Ground State System, Studied by Inelastic Neutron Scattering...

by Oleg Rivin, R. Osborn, Alexander I Kolesnikov, El'ad Caspi, Hagai Shaked
Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Volume
78
Issue
18

The results of inelastic neutron scattering on the hexagonal compounds TbCo3B2 and Tb0.75Y0.25Co3B2, at several temperatures are reported. The crystal field level scheme of Tb3+ ions in the paramagnetic phase is determined. This scheme contains a non-magnetic singlet (G1) as ground state. Inelastic neutron scattering at low temperature (10 K), leads to a different energy level scheme, where the singlet ground state is ferromagnetic with <Jx> # 0. This is a "self induced" ferromagnetism on the Tb sub-lattice, resulting from the admixture of higher crystal field levels into the singlet ground state by the exchange field. The resulting magnitudes of these ground state magnetic moments are 5.6(3) and 3(1) muB for TbCo3B2 and Tb0.75Y0.25Co3B2, respectively. These values are much smaller than the free ion value of 9 muB and are in agreement with previously observed values. Such large reductions are characteristic of the "self induced" ferromagnetism. The temperature dependence of the magnetic moment, magnetic anisotropy, Tb sub-lattice dilution and magnetic susceptibility are discussed.