Skip to main content
SHARE
Publication

Topological superconductivity from forward phonon scatterings

by Shaozhi Li, Lun Hui Hu, Rui Xing Zhang, Satoshi Okamoto
Publication Type
Journal
Journal Name
Communications Physics
Publication Date
Page Number
235
Volume
6
Issue
1

Searching for topological superconductors with non-Abelian states has been attracting broad interest. The most commonly used recipe for building topological superconductors utilizes the proximity effect, which significantly limits the working temperature. Here, we propose a mechanism to attain topological superconductivity via forward phonon scatterings. Our crucial observation is that electron-phonon interactions with small momentum transfers favor spin-triplet Cooper pairing under an applied magnetic field. This process facilitates the formation of chiral topological superconductivity even without Rashba spin-orbit coupling. As a proof of concept, we propose an experimentally feasible heterostructure to systematically study the entangled relationship among forward-phonon scatterings, Rashba spin-orbit coupling, pairing symmetries, and the topological property of the superconducting state. This theory not only deepens our understanding of the superconductivity induced by the electron-phonon interaction but also sheds light on the critical role of the electron-phonon coupling in pursuing non-Abelian Majorana quasiparticles.