Skip to main content
SHARE
Publication

Towards quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current s...

Publication Type
Journal
Journal Name
ACS Nano
Publication Date
Page Numbers
8175 to 8182
Volume
7
Issue
9

The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.