Skip to main content
SHARE
Publication

Tunable Ferromagnetism in LaCoO 3 Epitaxial Thin Films...

Publication Type
Journal
Journal Name
Advanced Materials Interfaces
Publication Date
Page Number
2200433
Volume
N/A

Ferromagnetic insulators play a crucial role in the development of low-dissipation quantum magnetic devices for spintronics. Epitaxial LaCoO3 thin film is a prominent ferromagnetic insulator, in which the robust ferromagnetic ordering emerges owing to epitaxial strain. Whereas it is evident that strong spin-lattice coupling induces ferromagnetism, the reported ferromagnetic properties of epitaxially strained LaCoO3 thin films are highly consistent. For example, even under largely modulated degree of strain, the reported Curie temperatures of epitaxially strained LaCoO3 thin films lie in a narrow range of 80–85 K, without much deviation. In this study, substantial enhancement (≈18%) in the Curie temperature of epitaxial LaCoO3 thin films is demonstrated via crystallographic orientation dependence. By changing the crystallographic orientation of the films from (111) to (110), the crystal-field energy is reduced and the charge transfer between the Co and O orbitals is enhanced. These modifications lead to a considerable enhancement of the ferromagnetic properties (including the Curie temperature and magnetization), despite the identical nominal degree of epitaxial strain. The findings of this study provide insights into facile tunability of ferromagnetic properties via structural symmetry control in LaCoO3.