Skip to main content
SHARE
Publication

Tuyere: Enabling Scalable Memory Workloads for System Exploration...

by Bo Peng, Jeffrey S Vetter, Shirley V Moore, Seyong Lee
Publication Type
Conference Paper
Book Title
HPDC: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing
Publication Date
Page Numbers
180 to 191
Conference Name
Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2018)
Conference Location
Tempe, Arizona, United States of America
Conference Sponsor
ACM
Conference Date
-

Memory technologies are under active development. Meanwhile, workloads on contemporary computing systems are increasing rapidly in size and diversity. Such dynamics in hardware and software further widen the gap between memory system design and performance evaluation. In this work, we propose a data-centric abstraction of high-performance computing applications for fast exploration of new memory technologies. We also provide a framework that uses a formal modeling language to describe the abstraction, automatically translates abstractions into memory traffic, and directly interfaces with cycle-accurate simulators. We evaluated the framework using 20 workloads and validated the memory traffic profile, the simulation results, and the relative memory changes of four memory technologies. Our results show that the data-centric abstraction can accurately capture application behavior adaptable to different input problems and can expedite system exploration.