Skip to main content
SHARE
Publication

Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays...

Publication Type
Journal
Journal Name
ACS Photonics
Publication Date
Page Numbers
2389 to 2395
Volume
3
Issue
12

With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. The demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.