Abstract
NASICON (sodium superionic conductor) based ceramics are one of the most promising classes of solidstate electrolytes for all-solid-state batteries. However, the mechanism of sodium ion diffusion is not understood in great detail since there is still a discrepancy between reported average structure models, local structures, and the number and position of sodium sites. To close this gap, we investigate the underlying diffusion mechanism and structural changes governing the Na+ transport in Na3.4Zr2Si2.4P0.6O12 using quasielastic neutron scattering (QENS) and powder X-ray diffraction (XRD). In the temperature range from 298 K to 640 K, the correlations between structural changes of a monoclinic C2/c to rhombohedral R3c phase transition and the result of ion diffusion are investigated. The analysis of the quasielastic neutron scattering data reveals two quasielastic components corresponding to the Chudley-Elliott jump-diffusion model. It clearly shows two different Na+ diffusion processes, local and long-range, on two different time and length scales and allows calculations of their corresponding activation energies. Additionally, the effects of Sc3+ and Al3+/Y3+ aliovalent substitution of Zr4+ ions on the crystal structure and Na+ diffusion are also studied. We can distinguish a local, chain, and cross-chain diffusion mechanism based on correlated QENS and XRD comparison of relevant nearest crystallographic Na–Na distances. The results reveal that the Na+ diffusion in these NASICONs is three-dimensional and can provide guidelines on how dopants and changes in the crystal structure can affect the Na+ conductivity.