Skip to main content
SHARE
Publication

Van der Waals Epitaxial Growth of Single-Crystal Two-Dimensional GaSe on Graphene ...

Publication Type
Journal
Journal Name
ACS Nano
Publication Date
Page Numbers
8078 to 8088
Volume
9
Issue
8

Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigations of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9° interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.