Skip to main content


ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to

1 - 10 of 325 Results

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Nanofabricated “golden lollipop” helps researchers observe Fano interference using electron microscopy techniques at Oak Ridge National Laboratory.

Electrons in atoms are pretty talented. They can form chemical bonds, get kicked out of the atom and even “jump” to different locations based on their energetic states.

ORNL-created Chattanooga building energy models. Image Credit: Joshua New, ORNL

Buildings use 40 percent of America’s primary energy and 75 percent of its electricity, which can jump to 80 percent when a majority of the population is at home using heating or cooling systems and the seasons reach their extremes.

After studying the mixture of lead titanate and strontium titanate with x-ray diffraction imaging, the research team used machine learning techniques to identify two different phases at the nanoscale level: ferroelectric-ferroelastic (red, A) and polarization vortices (blue, V).

Beyond solids, liquids, gases, plasma, and other examples only accessible under extreme conditions, scientists are constantly searching for other states of matter.

SNS researchers

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Misha Krassovski, a computer scientist at Oak Ridge National Laboratory, stands in front of the Polarstern, a 400-foot long German icebreaker. Krassovski lived aboard the Polarstern during the first leg of the MOSAiC mission, the largest polar expedition ever. Credit: Misha Krassovski/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the vast frozen whiteness of the central Arctic, the Polarstern, a German research vessel, has settled into the ice for a yearlong float.

ORNL researcher Chengyun Hua explains chemical elements to Leah Pitts, 9, and her sister Madeline, 6, as their mother, Shayne looks on. The Pittses are part of Pack 50 in the Karns area of Knoxville.

Scouts from around East Tennessee learned about supercomputing, electricity, isotopes, physics, and much more at Oak Ridge National Laboratory’s final Traveling Science Fair event of 2019

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

A new method uses E. coli to generate DNA with methylation patterns that target microbes recognize and accept as their own, facilitating customization of microbes for biofuels production.

Scientists at the US Department of Energy’s Oak Ridge National Laboratory have demonstrated a method to insert genes into a variety of microorganisms that previously would not accept foreign DNA, with the goal of creating custom microbes to break down plants for bioenergy.