Skip to main content

News Releases

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
Multiple circles surround a data set with green in the middle, orange on the outer ring, followed by blue at the bottom, green to the right and purple to the left. There are images in the background of ORNL's campus

ORNL has developed a network of autonomous science laboratories outfitted with state-of-the-art artificial intelligence and robotic systems and connected to the lab’s world-class user facilities. The goal is to supercharge the research process while producing scientific breakthroughs that would be unachievable in a traditional setting.

Three people standing in a lab holding materials

ORNL, the Tennessee Valley Authority and the Tennessee Department of Economic and Community Development were recognized by the Federal Laboratory Consortium, or FLC, for their efforts to develop Tennessee as a national leader in fusion energy. 

headshot of Jerry Tuskan

Gerald Tuskan, director of the Center for Bioenergy Innovation and a Corporate Fellow at ORNL, has been awarded the Marcus Wallenberg Prize, the world’s highest honor in the field of forestry, for his pioneering work in sequencing and analyzing the first tree genome.

Two cylinders on each side of the photo are pointing to bright glowing orb in the center.

Scientists at ORNL have developed a method that can track chemical changes in molten salt in real time — helping to pave the way for the deployment of molten salt reactors for energy production.

Animated graphic with a plant on the right, blue sphere on the left and blue glowing dots scattered throughout.

To help reduce the likelihood of losing future cultivated crops to drought and other seasonal hardships, researchers from ORNL, Budapest and Hungary are using neutrons, light microscopy and transmission electron microscopy to study the 'Never Never' plant, known for its ability to endure periods of little to no rain. 

Illustration of a quantum experiment: atoms in a lattice (inset) with entanglement effects radiating from a central particle on a textured surface.

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing. 

ORNL Director of Sepcial Initatives Joe Hoagland poses for a photo in front of a grey backdrop.

Joe Hoagland, a leader in regional energy innovation, has been named director of special initiatives at the Department of Energy’s Oak Ridge National Laboratory. 

Three egg-shaped orbs of varying opacity are shown on a dark blue background, increasing transparency revealing they are filled with smaller round balls of red and blue. Arrows indicate counterclockwise rotation of the orbs, and green squiggles imply motion of the smaller balls.

Using the Frontier supercomputer at ORNL, researchers have developed a new technique that predicts nuclear properties in record detail. The study revealed how the structure of a nucleus relates to the force that holds it together. This understanding could advance efforts in quantum physics and across a variety of sectors, from to energy production to national security.

Two semi-trucks filled with supplies for disaster relief, two men loading the trucks

ORNL staff and its managing contractor, UT-Battelle, donated $1,104,866 in the 2024 ORNL Gives campaign, an annual employee-led effort to address needs throughout East Tennessee. 

Photo is a graphical representation of lithium ions (glowing orbs) move through a diffusion gate (gold triangle) in a solid-state electrolyte

A team of scientists led by a professor from Duke University discovered a way to help make batteries safer, charge faster and last longer. They relied on neutrons at ORNL to understand at the atomic scale how lithium moves in lithium phosphorus sulfur chloride, a promising new type of solid-state battery material known as a superionic compound.