Skip to main content
An encapsulation system developed by ORNL researchers prevents salt hydrates, which are environmentally friendly thermal energy storage materials, from leaking and advances their use in heating and cooling applications. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have developed a novel way to encapsulate salt hydrate phase-change materials within polymer fibers through a coaxial pulling process. The discovery could lead to the widespread use of the low-carbon materials as a source of insulation for a building’s envelope.

Using a better modeling framework, with data collected from Mississippi Delta marshes, scientists are able to improve the predictions of methane and other greenhouse gas emissions. Credit: Matthew Berens/ORNL, U.S Dept. of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are using a new modeling framework in conjunction with data collected from marshes in the Mississippi Delta to improve predictions of climate-warming methane and nitrous oxide.

  Scientists applied a simple approach for growing hBN films on the surface of ubiquitous steels and other metal alloys to “armor” them and thus increase their capabilities. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers demonstrated that stainless steel and other metal alloys coated with hexagonal boron nitride, or hBN, exhibit non-stick or low-friction qualities along with improved long-term protection against harsh corrosion and high-temperature.

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

Default image of ORNL entry sign
Combined heat and power (CHP) technologies, which capture and reuse waste heat from electric or mechanical power, account for about 9 percent of annual U.S. power generation. Roughly doubling that capacity could cut projected U.S. carbon dioxide emissions by 60 percent by 2030„ the equivalent to tak...
Default image of ORNL entry sign
Californium-252 and actinium-225 generated half of the $5 million in sales for the Department of Energy's National Isotope Data Center at ORNL in fiscal year 2008. That amount represents a $1 million increase from 2007. Californium-252 „ used as a start-up source in nuclear reactors, in analyzers fo...
Default image of ORNL entry sign
Mathematics and sensors come together in some new ways to form a powerful tool for combating terrorism, piracy and the transport of drugs. In a project that combines resources at ORNL and Clemson University, researchers and students are using something called Level 3 sensor fusion to identify and pr...
Default image of ORNL entry sign
Data from NASA's Orbiting Carbon Observatory combined with computational power and tools provided by ORNL researchers will result in unprecedented levels of information about atmospheric carbon dioxide. The satellite, scheduled for launch in mid-January, will collect precise global measurements of C...
Default image of ORNL entry sign
Maps showing possible regional impacts of climate change in the Dominican Republic could play a role in setting policy there and beyond. The maps, generated by a group of researchers at Oak Ridge National Laboratory, will be used for climate change policy discussions and published in a future issue ...
Default image of ORNL entry sign
Keeping track of weapons at nuclear facilities and other installations could get a lot easier with a technology developed by researchers at Oak Ridge National Laboratory and Visible Assets of New Hampshire. The technology, which uses low-frequency magnetic waves to transmit signals from tags install...