Skip to main content
Inspired by the brain’s web of neurons, deep neural networks consist of thousands or millions of simple computational units.

Deep neural networks—a form of artificial intelligence—have demonstrated mastery of tasks once thought uniquely human. Their triumphs have ranged from identifying animals in images, to recognizing human speech, to winning complex strategy games, among other su...

Chlorite dismutase - Journal cover art reprinted with permission from ACS Catalysis, vol. 7, issue 11, November 3, 2017. Further permissions related to the material excerpted should be directed to the ACS.

A new study sheds light on a unique enzyme that could provide an eco-friendly treatment for chlorite-contaminated water supplies and improve water quality worldwide. An international team of researchers led by Christian Obinger from the University of Vienna used neutron analys...

Bacteria containing enzymes called beta-lactamases, illustrated by the light blue cluster, break down antibiotics and allow bacterial infections to develop and spread through human cells (orange). A team from ORNL’s Neutron Sciences Directorate is using n
The discovery of penicillin almost 90 years ago ushered in the age of modern antibiotics, but the growth of antibiotic resistance means bacterial infections like pneumonia and tuberculosis are becoming more difficult to treat.
Professors Zhenzhen Yu (left) and Michael Joachim Andreassen use neutrons at HFIR’s NRSF2 to investigate residual stresses expected to occur in the welds of offshore underwater wind turbine foundations. (Credit: ORNL/Genevieve Martin)
Massive offshore structures like oil rigs and wind turbines are designed to withstand the myriad punishments oceans tend to mete out. However, over time, just the saltwater itself can significantly decrease the durability of a structure’s welds. That’s why professors Michael Jo...
When a neutron star forms, compression creates heat that generates neutrinos. When the star’s core collapses, a shock wave propagates around the star but stalls. Credit: ORNL, U.S. Dept. of Energy; created by J.A. Harris.

The Big Bang began the formation and organization of the matter that makes up ourselves and our world. Nearly 14 billion years later, nuclear physicists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) and their partners are using America’s most powerful supercomp...

Arjun Shankar

The field of “Big Data” has exploded in the blink of an eye, growing exponentially into almost every branch of science in just a few decades. Sectors such as energy, manufacturing, healthcare and many others depend on scalable data processing and analysis for continued in...

ORNL Image
In a first-of-a-kind experiment, researchers used neutrons to investigate the performance of a new aluminum alloy in a gasoline-powered engine—while the engine was running. A team from the Department of Energy’s Oak Ridge National Laboratory worked with industry partners to perfor...
Left to right: ORNL’s Derek Rose, Matthew Eicholtz, Philip Bingham, Ryan Kerekes, Shaun Gleason
In the quest to better understand and cure childhood diseases, scientists at St. Jude Children’s Research Hospital accumulate enormous amounts of data from powerful video microscopes. To help St. Jude scientists mine that trove of data, researchers at Oak Ridge National Laboratory hav...
Neutrons_beating_clock
Using neutron scattering at Oak Ridge National Laboratory, a research team captured a time-sensitive phenomenon to prove that the entropy, or randomness, of atoms in a metallic glass when exposed to intense heat is linked to how atoms self-configure versus their vibration. The large neutron flux of ORNL’s Wide Angular Range Chopper Spectrometer continuously recorded changes in the sample’s vibrations as the temperature slowly increased—a technique not possible a decade ago.
VA_healthcare_dataset
Oak Ridge National Laboratory has partnered with the Department of Veterans Affairs to develop methods and algorithms to mine the VA’s health data more efficiently. The resulting novel, secure platform promises to improve the health and wellbeing of millions of veterans through better understanding of underlying causes of diseases and conditions, hereditary factors and health history.