Skip to main content
Two ORNL researchers inspect carbon fiber materials - one black rectangular sheet and one see-through sheet of film.

Researchers at ORNL have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites – an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials. 

Using a toolpath strategy for weight reduction, two near-net shape dies were manufactured using a gas metal arc welding additive manufacturing process at the Lincoln Electric Additive Solutions facility. Credit: Lincoln Electric

Recent advancements at ORNL show that 3D-printed metal molds offer a faster, more cost-effective and flexible approach to producing large composite components for mass-produced vehicles than traditional tooling methods.

Illustration of a real-time simulation showing a metallic nanoparticle’s optical response to light using RT-TDDFT. The image depicts electron oscillations and surrounding electromagnetic fields. Four inset panels represent applications: plasmon-enhanced biosensing, quantum computing, photochemical catalysis, and cancer detection through photothermal therapy.

A research team from the Department of Energy’s Oak Ridge National Laboratory, in collaboration with North Carolina State University, has developed a simulation capable of predicting how tens of thousands of electrons move in materials in real time, or natural time rather than compute time.

Green and blue background of a graphic image that says Honors and Awards

Mariam Kiran, a quantum research scientist at the Department of Energy’s Oak Ridge National Laboratory, was recently honored as a finalist at the British Council’s Study U.K. Alumni Awards 2025, which celebrate the achievements of U.K. alumni worldwide.

Scientist Vilmos Kertesz poses for a photo in front of a grey cloudy backdrop

Vilmos Kertesz, senior staff in the Biosciences Division at ORNL, has received a 2025 Al Yergey Mass Spectrometry Scientist Award from the American Society for Mass Spectrometry. The award recognizes his contributions to the fields of analytical chemistry and mass spectrometry.

headshot of Jerry Tuskan

Gerald Tuskan, director of the Center for Bioenergy Innovation and a Corporate Fellow at ORNL, has been awarded the Marcus Wallenberg Prize, the world’s highest honor in the field of forestry, for his pioneering work in sequencing and analyzing the first tree genome.

Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

Illustration of a quantum experiment: atoms in a lattice (inset) with entanglement effects radiating from a central particle on a textured surface.

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing. 

ORNL researcher Melissa Cregger is standing outside smiling for a photo. Woman is wearing blue and white polka dot shirt with a purple cardigan.

Melissa Cregger of the Department of Energy’s Oak Ridge National Laboratory has received the Presidential Early Career Award for Science and Engineers, or PECASE, the highest honor bestowed by the U.S. government on outstanding early-career scientists and engineers. 

Procter & Gamble scientists used ORNL’s Summit supercomputer to create a digital model of the corneal epithelium, the primary outer layer of cells covering the human eye, and test that model against a series of cleaning compounds in search of a gentler, more environmentally sustainable formula.

P&G is using simulations on the ORNL Summit supercomputer to study how surfactants in cleaners cause eye irritation. By modeling the corneal epithelium, P&G aims to develop safer, concentrated cleaning products that meet performance and safety standards while supporting sustainability goals.