Skip to main content
Image of Stable Isotope Production and Research Facility

The Department of Energy has awarded an $88.8 million contract to Hensel Phelps for the construction of a facility to enrich stable isotopes at Oak Ridge National Laboratory. 

A graphic representation of AI

The Department of Energy announced a $67 million investment in several AI projects from institutions in both government and academia as part of its AI for Science initiative. Six ORNL-led (or co-led) projects received funding.

Larry York is sitting in front of a computer screen showing an image of plant phenotyping

The Advanced Plant Phenotyping Laboratory at ORNL utilizes robotics, multi-modal imaging, and AI to enhance understanding of plant genetics and interactions with microbes. It aims to connect genes to traits for advancements in bioenergy, agriculture, and climate resilience. Senior scientist Larry York highlights the lab's capabilities and the insights from a new digital underground imaging system to improve biomass feedstocks for bioenergy and carbon storage.

This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

Takeshi Egami stands at his workstation at ORNL’s Spallation Neutron Source where he used novel experimental methods to propose the density wave theory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Distinguished materials scientist Takeshi Egami has spent his career revealing the complex atomic structure of metallic glass and other liquids — sometimes sharing theories with initially resistant minds in the scientific community. 

pulsed laser deposition setup

In a game-changing study, ORNL scientists developed a deep learning model — a type of artificial intelligence that mimics human brain function — to analyze high-speed videos of plasma plumes during a process called pulsed laser deposition.

dog

After retiring from Y-12, Scott Abston joined the Isotope Science and Engineering Directorate to support isotope production and work with his former manager. He now leads a team maintaining critical equipment for medical and space applications. Abston finds fulfillment in mentoring his team and is pleased with his decision to continue working.

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

Bryan Maldonado

As a mechanical engineer in building envelope materials research at ORNL, Bryan Maldonado sees opportunities to apply his scientific expertise virtually everywhere he goes, from coast to coast. As an expert in understanding how complex systems operate, he’s using machine learning methods to control the process and ultimately optimize performance. 

Illustration of oscillating UCI3 bonds

Researchers for the first time documented the specific chemistry dynamics and structure of high-temperature liquid uranium trichloride salt, a potential nuclear fuel source for next-generation reactors.