Skip to main content
MDF Exterior

ORNL scientists will present new technologies available for licensing during the annual Technology Innovation Showcase. The event is 9 a.m. to 3 p.m. Thursday, June 16, at the Manufacturing Demonstration Facility at ORNL’s Hardin Valley campus.

LandScan Global depicts population distribution estimates across the planet. The darker orange and red colors above indicate higher population density. Credit: ORNL, U.S. Dept. of Energy

It’s a simple premise: To truly improve the health, safety, and security of human beings, you must first understand where those individuals are.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

With seismic and acoustic data recorded by remote sensors near ORNL’s High Flux Isotope Reactor, researchers could predict whether the reactor was on or off with 98% accuracy. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

ORNL, VA and Harvard researchers developed a sparse matrix full of anonymized information on what is thought to be the largest cohort of healthcare data used for this type of research in the U.S. The matrix can be probed with different methods, such as KESER, to gain new insights into human health. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team of researchers has developed a novel, machine learning–based  technique to explore and identify relationships among medical concepts using electronic health record data across multiple healthcare providers.

ORNL scientists created a new microbial trait mapping process that improves on classical protoplast fusion techniques to identify the genes that trigger desirable genetic traits like improved biomass processing. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy. Reprinted with the permission of Oxford University Press, publisher of Nucleic Acids Research

ORNL scientists had a problem mapping the genomes of bacteria to better understand the origins of their physical traits and improve their function for bioenergy production.

ORNL’s Marie Kurz examines the many factors affecting the health of streams and watersheds. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Spanning no less than three disciplines, Marie Kurz’s title — hydrogeochemist — already gives you a sense of the collaborative, interdisciplinary nature of her research at ORNL.

A new process developed by Oak Ridge National Laboratory leverages deep learning techniques to study cell movements in a simulated environment, guided by simple physics rules similar to video-game play. Credit: MSKCC and UTK

Scientists have developed a novel approach to computationally infer previously undetected behaviors within complex biological environments by analyzing live, time-lapsed images that show the positioning of embryonic cells in C. elegans, or roundworms. Their published methods could be used to reveal hidden biological activity. 

Mars Rover 2020

More than 50 current employees and recent retirees from ORNL received Department of Energy Secretary’s Honor Awards from Secretary Jennifer Granholm in January as part of project teams spanning the national laboratory system. The annual awards recognized 21 teams and three individuals for service and contributions to DOE’s mission and to the benefit of the nation.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.