Skip to main content
Two ORNL researchers are standing to the right of a computer screen and a poster promoting the AI Expo
The Department of Energy’s Oak Ridge National Laboratory gathered more than 200 artificial intelligence experts and domain scientists for an AI expo exploring cutting edge artificial intelligence that’s making a difference for scientific research
Image of the Frontier supercomputer in black with Frontier spelled out across the cabinets in front.

Research teams at the Department of Energy’s Oak Ridge National Laboratory received computing resource awards to train and test AI foundation models for science. A total of six ORNL projects were awarded allocations from the National Artificial Intelligence Research Resource, or NAIRR, pilot and the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program to train their AI models.

ORNL researcher Jesse Labbe is working with plants in a greenhouse. He is framed on all sides with bright green leaves

Jesse Labbé aims to leverage biology, computation and engineering to address societal challenges related to energy, national security and health, while enhancing U.S. competitiveness. Labbé emphasizes the importance of translating groundbreaking research into practical applications that have real-world impact.

Illustration of a glowing black box emitting digital particles that form into a 3D model of an electrical grid infrastructure, set against a background of binary code and data visualizations.

Researchers at Oak Ridge National Laboratory have developed a modeling method that uses machine learning to accurately simulate electric grid behavior while protecting proprietary equipment details. The approach overcomes a key barrier to accurate grid modeling, helping utilities plan for future demand and prevent blackouts. 

 

Green and blue background of a graphic image that says Honors and Awards

Mariam Kiran, a quantum research scientist at the Department of Energy’s Oak Ridge National Laboratory, was recently honored as a finalist at the British Council’s Study U.K. Alumni Awards 2025, which celebrate the achievements of U.K. alumni worldwide.

Illustration of a virtual meeting on a laptop screen featuring diverse cartoon avatars of people in a grid layout. In the center, a logo reads “Winter Classic Invitational Student Cluster Competition.” The background consists of digital blue circuitry and data flow patterns, suggesting a technology or computing theme.

ORNL researchers helped introduce college students to quantum computing for the first time during the 2025 Winter Classic Invitational, providing hands-on access to real quantum hardware and training future high-performance computing users through a unique challenge that bridged classical and quantum technologies.

Erica Prates is presenting to a group of attendees at Vandy workshop in a table conference room, standing next to a screen glowing in white

Scientists at the Department of Energy’s Oak Ridge National Laboratory recently welcomed Vanderbilt University colleagues for a symposium on basic science research, with a focus on potential collaborations in the biomedical and biotechnology spaces.

Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

Researcher is sitting in bio lab surrounded with plants

Dave Weston studies how microorganisms influence plant health and stress tolerance, using the Advanced Plant Phenotyping Laboratory to accelerate research on plant-microbe interactions and develop resilient crops for advanced fuels, chemicals and 

Wall of black computer chords with blue wiring

Researchers from ORNL have developed a new application to increase efficiency in memory systems for high performance computing. Rather than allow data to bog down traditional memory systems in supercomputers and impact performance, the team from ORNL, along with researchers from the University of Tennessee, Knoxville, created a framework to manage data more efficiently with memory systems that employ more complex structures.