Skip to main content
Animated graphic with a plant on the right, blue sphere on the left and blue glowing dots scattered throughout.

To help reduce the likelihood of losing future cultivated crops to drought and other seasonal hardships, researchers from ORNL, Budapest and Hungary are using neutrons, light microscopy and transmission electron microscopy to study the 'Never Never' plant, known for its ability to endure periods of little to no rain. 

Different groups of proteins shown in different colors combine and attach to a broken strand of DNA.

Researchers at Georgia State University used the Summit supercomputer to study an elaborate molecular pathway called nucleotide excision repair. Decoding NER’s sophisticated sequence of events and the role of PInC in the pathway could provide key insights into developing novel treatments and preventing conditions that lead to premature aging and certain types of cancer.

Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to Oak Ridge National Laboratory, Energy Secretary Chris Wright compared the urgency of the Lab’s World War II beginnings to today’s global race to lead in artificial intelligence, calling for a “Manhattan Project 2.”

Six images fanned out across the right side of the page with the first page showcasing the report cover. To the right hand side is a green oak leaf.

A workshop led by scientists at ORNL sketched a road map toward a longtime goal: development of autonomous, or self-driving, next-generation research laboratories. 

Hugh O'Neil, director or ORNL's Center for Structural Molecular Biology is sitting in the lab on a stool, hand on desk with glasses on. There are lab related items blurred in the foreground.

Hugh O’Neill’s lifelong fascination with the complexities of the natural world drives his research at ORNL, where he’s using powerful neutron beams to dive deep into the microscopic realm of biological materials and unlock secrets for better production of domestic biofuels and bioproducts.

Two ORNL scientists are standing outside in front of a blue window with a plant in the top middle of the photo

ORNL's Gregorich and Syed Islam recently completed Cohort 19 of the Energy I-Corps program, an initiative of DOE’s Office of Technology Transitions that provides teams of researchers and industry mentors with an immersive two-month training.

Photo is a graphical representation of lithium ions (glowing orbs) move through a diffusion gate (gold triangle) in a solid-state electrolyte

A team of scientists led by a professor from Duke University discovered a way to help make batteries safer, charge faster and last longer. They relied on neutrons at ORNL to understand at the atomic scale how lithium moves in lithium phosphorus sulfur chloride, a promising new type of solid-state battery material known as a superionic compound. 

The graphic shows the headshot of Nick Sokol, with text overlay saying "Innovations Crossroads Cohort 2024"

Nick Sokol founded Algaeo, a company that uses microalgae to produce organic fertilizers, offering a sustainable, cost-effective alternative to synthetic fertilizers. Supported by Oak Ridge National Laboratory's Innovation Crossroads program, Sokol is developing this technology to improve soil health, boost plant growth and support small-scale farmers.

ORNL partnerships director Shaun Gleason is posing in a suit for a photo with a black background

Shaun Gleason has been named director of the Partnerships Office at ORNL. Gleason has worked at ORNL for several decades, in a variety of roles, including Director of Science-Security Initiative Integration, Director of the Computational Sciences and Engineering Division and Director of Institutional Planning.

A male researcher is standing next to a poster board displayed on an easel to the right. The researcher is dressed in professional attire, and the poster board is positioned beside him, showing research or visual information.

Ryan Culler is the program manager at Oak Ridge National Laboratory, where he oversees the production of actinium-225, a promising treatment for cancer. Driven by a personal connection to cancer through his late brother, Culler is dedicated to advancing medical isotopes to help improve cancer care.