Skip to main content
SHARE
Publication

Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices...

Publication Type
Journal
Journal Name
Additive Manufacturing
Publication Date
Page Number
101106
Volume
32
Issue
1

Carbon fiber reinforced polymer (CFRP) composite is known for its high stiffness-to-weight ratio and hence is of great interest in several engineering fields such as aerospace, automotive, defense, etc. However, such a composite is not suitable for energy dissipation as failure occurs with very little or no plastic deformation. Herein, we present an extendable multi-material projection microstereolithography process capable of producing carbon-fiber-reinforced cellular materials that achieve simultaneously high specific stiffness and damping coefficient. Inspired by the upper bounds of stiffness-loss coefficient in a two-phase composite, we designed and additively manufactured CFRP microlattices with soft phases architected into selected stiff-phase struts. Our results, confirmed by experimental and analytical calculations, revealed that the damping performance can be significantly enhanced by the addition of only a small fraction of the soft phase. The presented design and additive manufacturing strategy allow for optimizing mutually exclusive properties. As a result, these CFRP microlattices achieved high specific stiffness comparable to commercial CFRP, technical ceramics, and composites, while being dissipative like elastomers.