Skip to main content
SHARE
Publication

Chameleon: An Adaptive Wear Balancer for Flash Clusters...

by Nannan Zhao, Feiyi Wang, Ali Butt
Publication Type
Conference Paper
Book Title
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Publication Date
Page Numbers
1163 to 1172
Conference Name
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Conference Location
Vancouver, Canada
Conference Sponsor
IEEE
Conference Date
-

NAND flash-based Solid State Devices (SSDs) offer the desirable features of high performance, energy efficiency, and fast growing capacity. Thus, the use of SSDs is increasing in distributed storage systems. A key obstacle in this context is that the natural unbalance in distributed I/O workloads can result in wear imbalance across the SSDs in a distributed setting. This, in turn can have significant impact on the reliability, performance, and lifetime of the storage deployment. Extant load balancers for storage systems do not consider SSD wear imbalance when placing data, as the main design goal of such balancers is to extract higher performance. Consequently, data migration is the only common technique for tackling wear imbalance, where existing data is moved from highly loaded servers to the least loaded ones. In this paper, we explore an innovative holistic approach, Chameleon, that employs data redundancy techniques such as replication and erasure-coding, coupled with endurance-aware write offloading, to mitigate wear level imbalance in distributed SSD-based storage. Chameleon aims to balance the wear among different flash servers while meeting desirable objectives of: extending life of flash servers; improving I/O performance; and avoiding bottlenecks. Evaluation with a 50 node SSD cluster shows that Chameleon reduces the wear distribution deviation by 81% while improving the write performance by up to 33%.