Skip to main content
SHARE
Publication

Computer Simulation of Cascade Damage in α-Iron with Carbon in Solution...

by Calder Andrew, David Bacon, Aleksandr Barashev, Yury N Osetskiy
Publication Type
Journal
Journal Name
Journal of Nuclear Materials
Publication Date
Page Numbers
91 to 95
Volume
382
Issue
2-3

Molecular dynamics simulation method is used to investigate defect production by displacement cascades in iron with carbon (C) in solution. This is the first study of cascade damage in a metal containing interstitial solute. Iron is of particular interest because of the use of ferritic steels in plant for nuclear power generation. Cascades are simulated with energy in the range 5 to 20keV in iron at either 100 or 600K containing carbon with concentration in the range 0 to 1at%. C in solution has no discernible effect on the number of defects produced in cascades under any of the conditions simulated, nor on the clustered fraction of either self-interstitial atoms (SIAs) or vacancies. However, significant fractions of single SIAs and vacancies are trapped by C in the cascade process, irrespective of cascade energy. The fraction is independent of temperature for vacancies, but increases strongly with temperature for SIAs: this is a consequence of the higher mobility of the SIA.