Skip to main content
SHARE
Publication

H-mode threshold and dynamics in the national spherical torus experiment...

by Charles Bush, Yueng-kay M Peng, Rajesh Maingi, John B Wilgen, David Swain
Publication Type
Journal
Journal Name
Physics of Plasmas
Publication Date
Page Numbers
1755 to 1764
Volume
10
Issue
5

Edge parameters play a critical role in high confinement mode (H-mode) access, which is a key component of discharge optimization in present day toroidal confinement experiments and the design of next generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the National Spherical Torus Experiment (NSTX) [C. Neumeyer , Fusion Eng. Des. 54, 275 (2001)] edge plasma on heating power, including the low confinement mode (L-mode) to H-mode (L-H) transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent International Tokamak Experimental Reactor (ITER) [ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999)] scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by gas puff imaging and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent "ears" which can be sustained for many energy confinement times, tau(E), in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling. (C) 2003 American Institute of Physics.